Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J Clin Invest ; 131(23)2021 12 01.
Article in English | MEDLINE | ID: covidwho-1571525

ABSTRACT

Nucleoside-modified mRNA vaccines have gained global attention because of COVID-19. We evaluated a similar vaccine approach for preventing a chronic, latent genital infection rather than an acute respiratory infection. We used animal models to compare an HSV-2 trivalent nucleoside-modified mRNA vaccine with the same antigens prepared as proteins, with an emphasis on antigen-specific memory B cell responses and immune correlates of protection. In guinea pigs, serum neutralizing-antibody titers were higher at 1 month and declined far less by 8 months in mRNA- compared with protein-immunized animals. Both vaccines protected against death and genital lesions when infected 1 month after immunization; however, protection was more durable in the mRNA group compared with the protein group when infected after 8 months, an interval representing greater than 15% of the animal's lifespan. Serum and vaginal neutralizing-antibody titers correlated with protection against infection, as measured by genital lesions and vaginal virus titers 2 days after infection. In mice, the mRNA vaccine generated more antigen-specific memory B cells than the protein vaccine at early times after immunization that persisted for up to 1 year. High neutralizing titers and robust B cell immune memory likely explain the more durable protection by the HSV-2 mRNA vaccine.


Subject(s)
Herpes Genitalis , Herpesvirus 2, Human/immunology , Immunologic Memory , Memory B Cells/immunology , RNA, Viral/immunology , Vaccines, Synthetic/immunology , Viral Vaccines/immunology , Animals , COVID-19/immunology , COVID-19/prevention & control , Disease Models, Animal , Female , Guinea Pigs , Herpes Genitalis/immunology , Herpes Genitalis/prevention & control , SARS-CoV-2/immunology
SELECTION OF CITATIONS
SEARCH DETAIL